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An SR Electrodynamics is developed using a transformation of Einstein’s special relativity (SR). 

Laws and formulas are presented for forces, energy levels, and induction between relatively 

moving isolated charges, between a current element and an isolated charge, and between current 

elements. These laws and formulas are based on Coulomb’s Law and SR, both of which have been 

basic in conventional physics for over 100 years. Experiments designed and performed by the 

author support an induction formula from SR Electrodynamics as well as the classical Ampère’s 

Law derived from his own experiments in about 1822. SR Electrodynamics reveals neglected 

coherencies between SR and earlier formulations, such as the classical Ampère’s Law and 

Newton’s Third Law. Experimental findings are consistent with its mathematical expressions, and 

it provides novel insights in the field of electrodynamics, for central concepts such as that of  

‘magnetic field’ and ‘induction’ and for phenomena such as energy distribution in current 

elements (as in arc welding), the physics of force between current elements, radio wave 

propagation, gravity fields and sub-atomic nuclear-type orbits. 

Key Words: electrodynamics, special relativity (SR), Lorentz transform, electric field (e-field), 

relative moving charges, magnetic force, Coulomb force, magnetic field energy, steady-state, 

dynamic, induction. 
 

1. Introduction  

   Many scientists in the past have worked in the field of electrodynamics. Some of the 

more known, in the 1800’s, were Oersted, Ampère, Biot, Savart, Guass, Weber, 

Grassmann, Neumann, Lorentz, Faraday, and  Maxwell. Well-known contributors in the 

1900’s include, Einstein, Moon, Spencer, Pappas, Assis, Graneau, Klyushin, among 

others.  Much of the work in the field was done before the electron was discovered, 

before it was learned how current flowed in a wire, before the invention of vector 

analysis, before the invention of the computer, before the advent of an equation editor for 

a computer, and before Einstein’s discovery of special relativity. 

   This paper acknowledges Mario J. Pinheiro for his work “A reformulation of mechanics 

and electrodynamics” [1]. This paper especially acknowledges the work of Dr. Peter 

Graneau in his book, “Ampère-Neumann Electrodynamics of Metals” [2], because he 

supports and uses the old classical Ampère’s Law as derived from SR. The derivation of 

SR Electrodynamics from SR yields new insights into the general field of 

electrodynamics.  

Relativists have determined an equation for the transform of the electric field of a relatively 

moving electric charge. This equation Eq. (1) [3], [4] expresses the electric field intensity at a 

stationary point, emanating from a relatively moving charge q1 at a 3-vector distance of r1 (See 

Figure 1),                                               
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where v = magnitude of v, the uniform relative velocity between  q1 and a coordinate system or a 

stationary point in the coordinate system,  = 22 /1/1 cv− ,   = angle  between r1 and v. 1̂r , 

when used, is the unit vector of 1r  and r is it’s magnitude. The constants are k = 1/40 (0 = 

permittivity of free space) and c = speed of light. In the coordinate system, q1is determined to be 

moving at the origin while q2 is stationary, a convention used throughout this paper. Eq. (1), 

when multiplied by q2 (See Figure 2), a test charged placed at the stationary point, represents the 

total electrodynamics force between the stationary charge and the moving charge. This force 

consists of the electric Coulomb force and the magnetic force. This expression is good for 

relative velocity from zero up to c.   

 

  

Length contracted e-

field of moving electron 

as seen by a stationary 

charge. 

 

    q1 Uniform e-field of a 

stationary electron as seen by 

another stationary charge. 

Differences in these 

two e-fields create 

the magnetic field. 

Biot-Savart 

Law ignores 

this part. 

Figure 1. How special relativity (SR) creates the magnet field of moving 

charges. This shows a cross section of the effect on the e-field of a moving 

charge represented by Eq. (1). 
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   A problem with conventional electrodynamics begins with the Lorentz Force Law Eq. (2) and 

its inconsistency with a similar law derived from the application of SR. The Lorentz Force Law 

(three-force) is: 

                                                                     ( )q= + f e u h                                                                                 (2) 

where u is a three-vector relative velocity between q and an object not clearly specified. 

According to Assis and Peixoto [5], Lorentz would say the object is absolute space and Einstein 

would say the object is the observer. In this paper the specified object is the magnetic field force 

requiring consideration of relative velocity of moving charges. 

The second term in the equation is the vector cross product of u and h, h being the conventional 

magnetic field.  Relativists, physicists such as Dr. Wolfgang Rindler [3], using four-vector math 

and SR’s definition of four-force, use a Lorentz Transformation of the two terms of  Eq. (2), one 

term that involves the e-field and the other term that involves the h-field, the conventional 

magnetic field. As a result Relativists derive Eq. (1) but also another equation for the h-field 

given as (1/ )c v= h e . The Lorentz Force Law term for h should not be employed in the 

transformation when relating it to a moving charge and the resulting equation for h when it is 

used in the transformation should not be used. Confusion exists in this area with Dr. Rindler. 

Only the first term of the Lorentz Force Law, the e-field term, should be employed in the Four-

force transformation. Then Eq. (1), when associated with a stationary test charge, will produce 

both the electric and “magnetic” forces between the relatively moving charges. 

   An equation very similar to the Lorentz Force Law is derived from Eq. (1) using the Binomial Series and 

eliminating higher order terms of v2/c2: 
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Eq. (3) describes the total force between two relatively slow moving isolated charges. The first 

term describes an uniform e-field (Coulomb field) as in the Lorentz Force Law and the second 

r12 

v 

q2 (stationary) 

q1 (moving) 

Ɵ 

Figure 2. Relation between the vector terms in Eq. (1) and 

q2. 

               Ɵ is angle between r12 and v. 
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term describes magnetic effects as does the second term in the Lorentz force law. Also, the 

relative velocity v between the two charges is clearly defined, as in Eqs. (1) and (3), and not 

obscured as in the Lorentz Force Law. The force in  Eq. (3) acts along r12 and does not violate 

Newton’s Third Law as the Lorentz Force Law does [6]. Eq. (3) could be written as: 

( )2 1 1
ˆ

mq e e= +12 12f r                                                                          (4) 

where em1 is the new definition of the magnetic field created by the moving charge q1: 

( )
2

21
12 2

1

ˆ0.5 1.5cos
kq v

r c
= −m1e r                                                                 (5) 

The definition of a field, electric or magnetic, is force per unit charge. Consequently, multiplying 

em1 by q2 gives magnetic force between relatively slow moving isolated charges. 

   In their book “Electromagnetism” [7] Pollack and Stump applied special relativity to 

electrodynamics and applied the Lorentz Transformation just as Rindler had done, as described 

above. Pollack and Stump concluded that special relativity supports the Lorentz Force Law 

Eq.(2). But it is all based on using the second term in the Lorentz Force Law in their 

transformation. And it is illogical to use a formula at the start of the transformation to arrive at 

the same formula at the conclusion of the transformation.  

 Several electrodynamics laws emerge from the transformation shown by Eq. (1): the law for 

the magnetic force between slow relatively moving charges as described above, the law of 

magnetic force between a stationary charge and a current element, similar to Gauss’s Law, and 

the classical law for magnetic force between current elements as determined by Ampère. These 

magnetic force laws are steady-state laws meaning the relative velocity between the charges is 

constant. Other formulas, included in this paper, describe dynamic forces, referring to those that 

fluctuate with time and are expressed as variables, and voltage induction formulas similar to 

Neumann induction formulas. Dynamic forces and induction forces are closely related. 

 

2. The Magnetic Force Law between Slow Relative Moving Isolated Charges 

2.1 The steady-state magnetic force law between slow relative moving isolated charges 

This magnetic force law is derived from Eq. (1) by using the Binomial Series, eliminating the 

higher order terms of v2/c2 and subtracting out the stationary Coulomb force:  

 

          ( )
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12
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r c
=12 12f r                                                      (6) 

This formula looks familiar. It shows the angle dependence of the magnetic force. This magnetic 

force law obeys Newton’s Third Law and depends on the relative velocity. The force is in the 

direction of a line between the two charges (no torque is generated), and it does not depend on an 

ether. The charges are algebraic in the sense that a negative charge has a minus sign (-) 

associated with it and a positive charge has a plus sign (+) associated with it. A positive outcome 
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of the equation would represent an increase in the repulsion of the two charges, and a negative 

result would represent attraction or a decrease in repulsion. Remember in this equation and all 

the following equations that  is the angle between the relative velocity vector v and the radial 

vector r12 joining the two charges. Eq. (6) is a “steady-state” equation and describes the 

“magnetic force” only. In its derivation, the term for the “electric field force” has been 

subtracted.   

 

3. The Magnetic Force Law between a Stationary Current Element and a Stationary 

Charge  

3.1 The steady-state magnetic force law between a stationary current element and a stationary 

charge 

 This law Eq. (7) is derived from Eq. (1) in the same manner as Eq. (6) with the exception that 

q1 in Eq. (1) is replaced with 1ds1, where 1 is line charge density and 1ds1 is the current 

element charge: 

                                              ( )
2

22 1 1
122 2
ˆ 1 1 5cos

kq ds v
d - .

r c


=12f r                                                           (7) 

The γ in 1ds1 expresses length contraction of the distance between the moving charges in the 

current element as seen by the test charge q2 thereby increasing the effective charge density it 

sees. Notice the subtle differences between Eq. (6) and Eq. (7). The “0.5” in Eq. (6) is replaced 

by “1.0” in Eq. (7) and the moving charge q1 is replaced by the current element charge 1ds1. 

Also, notice that Eq. (7) describes a force between a stationary charge and a “magnetic field” em1 

of a stationary current element. There is no need to have q2 moving with respect to the current 

element as would be required by the Lorentz Force Law Eq. (2). This force has been reported in 

the works of Cooper [8] and Spencer [9].  

 Eq. (7) is very similar to Gauss’s Law (with the Coulomb term removed) derived in about 

1835 [9]. Gauss’s Law is: 

( )
2

21 2

2 2

12

ˆ 1 1 5cos
kq q v

- .
r c

=12 12f r                                                             (8) 

One or both of the charges in Gauss’s Law should be a current element charge Apparently 

Gauss, a mathematician, “back engineered” the classical Ampère’s Law to arrive at Eq.(8). The 

electron and special relativity had not been discovered when he derived this law. Gauss’s Law 

can denotes a force between relatively moving isolated charges, which differs from Eq. (6), the 

correct formula for the magnetic force between relatively moving isolated charges. It is 

important to recognize that Eq. (7) and Eq. (8) describes the magnetic force between a stationary 

charge q2 or a stationary 2ds2, and a current element charge 1ds1. In Eq. (7) the velocity term v 

is the relative velocity between the positive ion lattice, which is stationary relative to q2, and the 

moving electron lattice creating the current. When the equation is applied to the moving electron lattice of 

another current element the velocity term is the relative velocity of the electrons in that lattice and the moving 

electron lattice of the other current element.  
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Eq. (7) is employed to derive the classical Ampère’s Law [10]. Cross combination force 

relationships of Eq. (7), three altogether, are added together to form the classical Ampère’s Law 

as describes below. This is not a trivial derivation and is achieved here for the general 3-

dimensional case using vector analysis. Once Ampère’s Law has been derived, the connection of 

special relativity to electrodynamics is confirmed. Peter Graneau’s work on “The Ampère-

Neumann Electrodynamics of Metals” is then applicable [2]. Section 7, below,  presents original 

experiments that support the classical Ampère’s Law and the related Neumann induction. 

3.2 The dynamic magnetic force formula between a current element and a stationary charge 

    The following dynamic formula recognizes the time tr for a change in the relative velocity to 

effect a change in the force between the current element and a stationary charge, and it depends 

on the speed of light. This time is assumed to be: 

r

r
t

c
=                                                                                          (9) 

Differentiating Eq. (7) with respect to time, having r and  constant, applying tr, and recognizing 

acceleration /a dv dt=  we get: 
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12 12
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 Adding the steady-state to the differential we have: 
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d d d d

r c vc




 
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 
12 12F f f r                                    (11) 

The dynamic part of this formula will be compared below (Section 10.4) to a formula for a 

radiating magnet field from a short wire transmitting antenna. 

3.3 Induction 

No new SR Electrodynamics laws need to be created to show how induction occurs. It is 

known from experience with induction that it can occur in a wire two different ways. One way 

(induction by movement) is to move a charge, wire or current element in a magnetic field, so that 

a voltage (emf) is acquired by the charge or is induced along the wire or current element. The 

other way (induction by changing magnetic field) is to vary the magnetic field created by a 

current in a wire or current element so that a voltage or emf is induced in a separated charge or 

current element. Since the magnetic field in SR Electrodynamics is a compressed or reduced e-

field, Eq. (4), it is easy to determine the induced voltages using the existing SR Electrodynamics 

laws.  

 It is helpful to recall the definition of voltage from a physics book: “It is the work W done by 

a unit charge in passing between two points of a circuit equal to the potential drop between these 

two points. If W is now taken to represent the work done by the charge Q in moving between two 

such points, the potential drop between the points is /V W Q= . The term potential difference 

applies to both emf and potential drop; the practical unit is the volt. The potential difference 

between two points is one volt if a charge of one coulomb either requires or expends one joule of 

energy in moving from one point to the other” [11]. 
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3.4 Induction by movement of a charge with respect to a stationary current element 

The formula to be derived will be an elemental type formula as contrasted to formulas applied 

to macro circuits like large coils. Let u2 be the vector velocity of q2 and u1 be the vector velocity 

of the electron lattice in the current element. Then 
2 1= −v u u  and v is the magnitude of this 

relative velocity as used in the formula.  is the angle between v and r12. So the induced voltage 

will be: 

   ( ) ( )
2

22 1 1 1
2 2 122 2

12

ˆˆ1 1 5cosemf

kq q ds v
dV df dr - . u dt

r c


= =12 u r                                 (12) 

where ( )2 2 2

1 2 1 2 1 2
ˆ ˆ2v u u u u= + − u u  . 

3.5 Induction on a stationary charge with respect to a stationary current element by varying 

current in the current element 

 This is the situation where a changing magnetic field induces a voltage on the stationary 

charge with the distance between the current element and the charge remaining constant. 

The energy stored in the field between the current element and charge is given by: 

  
12

r

dE dr


=  12f                                                                         (13) 

So that:                                                     ( )
2
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12 2

12
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dE - .
r c


= −                                                   

(14)  

A change in 12dE due to a change in relative velocity would represent the work done on q2. 

So that the induced emf voltage emfdV is: 

      ( )22 1 1 1
12 12

12

2
( ) 1 1 5cosemf

kq ds v
dV d dE - . dv

c r


= =                                       (15) 

Since 1 1 1I v= then 
1 1 1/dv dI = . Substituting in Eq. (15): 

                            ( )22 1 1
12 12

12 1

2
( ) 1 1 5cosemf

kq I ds
dV d dE - . dI

c r



= =                                        (16) 

 

4. The Magnetic Force Law between Current Elements  

4.1 The steady-state magnetic force law between stationary current elements (classical Ampère’s 

Law)  

 The test charge q2 in Eq. (7) may be replaced by 2ds2 of another wire current element with 

charge line density 2. Then the two ds’s are replaced by two Ids/v’s, the v corresponding to the 

moving charges in each of the two current elements. The positive ion lattices of the two 

stationary current elements are stationary with respect to each other. Their Coulomb repulsion 

has already been subtracted out of Eq. (7) and this force does not need to be added. Then 

applying Eq. (7) three times to the cross combination of charges in the two current elements and 

adding the forces one arrives at the classical Ampère’s Law [10] [12]: 
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                  ( )2 1 2 1 2
1 2 1 22 2

12

2sin sin cos -cos cos
kI I ds ds

d
c r

    = −12 12f r                              (17) 

where 12r


= unit vector in the direction of r12 and r12  = magnitude of the vector r12 joining the 

two current elements. The constants are k = 1/40 (0 = permittivity of free space) and c = speed 

of light. The I1 and I2 are current magnitudes and ds1 and ds2 are current element lengths. The 

angles are: 1 = angle between ds1 and r12; 2 = angle between ds2 and r12;  = angle between 

the plane of ds2 with r12 and the plane of ds12 with r12. 

 Using vector analysis the classical Ampère’s Law is mathematically equivalent to and is more 

conveniently expressed as: 

               ( )2 1 2 1 2
12 12 2

12

= - 2 -3( )( )
kI I ds ds

d d d d d
c r

• • •12 2 1 12 2 12f r s s s r s r                               (18) 

where d2f12 is the force on current element 1 caused by current element 2, r12 is the vector 

displacement from 1 to 2, and I1 and I2 are current magnitudes in current elements 1 and 2 

respectively. The constants are k = 1/40 (0 = permittivity of free space) and c = speed of light. 

    A study of Ampère’s Law reveals that successive current elements with current in the same 

direction repel each other. This fact was illustrated by Peter Graneau’s experiments [2] of 

exploding wires by conducting huge currents through them. Parallel current elements with 

current in the same direction attract each other. 

     Eq. (18) is an instantaneous action at a distance formula involving constant currents in the 

current elements. It does not have a term that involves retardation of the field between the 

current elements. It is postulated the electric field of a moving charge with constant velocity has 

already pervaded all the space of its inertial frame. When acceleration affects the relative 

velocity, the magnetic force is affected by the change in velocity, but at a retarded time until the 

change in the electric field arrives at speed c, in most cases, at the other current element. This 

effect is not expressed in the SR Electrodynamics Eqs. (6), (7), (17), (18), and (38). Where 

distances are short, this effect is negligible. Weber in about 1845 wrote and published an 

equation identical to Eq. (6), with the exception that he added an acceleration term [9] (see 

Section 6.3).  

   The angle dependencies of Eq. (17) and Eq. (18) were tested and validated in the paper 

“Experiment with Ampère’s Law and the Current Element” [13]. 

4.3 Induction between a stationary current element and a moving current element 

Let 1u be the velocity vector of 1ds with respect to
2ds , then: 

 ( )2 2 12 2 2 1 1
12 1 1 122 2

12

ˆ( ) ( ) =- 2 -3( )( )emf

dr kI ds I ds
d V t d f d d d d

dt c r
= • • •2 1 12 2 12s s s r s r u r                     (19) 

4.4 Induction between two stationary current elements with varying current in one element  

    In this case, we integrate Eq. (18) from ∞ to r to get the energy in the field between the two 

current elements and then vary the current in one of the current element to vary its field energy. 

The change in field energy then induces a voltage in the other current element. These current 

elements can be in the same circuit or each in separate circuits: 
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 
2

2 12 1 2 2 1
12

12

( )
ˆ ˆ ˆ ˆ ˆ ˆ( ) = 2 -3( )( )emf

d d E kds ds I dI
d V t d d d d

dt c r dt
= • • •2 1 12 2 12s s s r s r                       (20) 

This formula is tested below in an experiment with current elements in separate circuits. It 

expresses a voltage induced in current element ds2 caused by a varying current in current element 

ds1 when I2 is set to 1amp. Also, all terms not including the current terms on the right side of Eq. 

(20) and the minus sign, represent the mutual inductance between the two current elements: 

   2 2 1 2
12 12 12

12

ˆ ˆ ˆ ˆ ˆ ˆ2 -3( )( )M

kds ds
d L d L d d d d

c r
= = • • •2 1 12 2 12s s s r s r                                          (21) 

  The following Eq. (22) is also equal to Eq. (21) replacing k with 
o , the permeability of  free 

space: 

   2 1 2
12 1

12

ˆ ˆ ˆ ˆ ˆ ˆ= 2 -3( )( )
4

M ods ds
d L d d d d

r




• • •2 1 12 2 12s s s r s r                                           (22) 

12ML for two separate circuits can be calculated on a computer using finite current element size: 

   
1 2

2

12

1 1

n n

ML d L=                                                                         (23) 

So the induced voltage based on Eq. (20) and dropping the minus sign for open circuit 2 is: 

   1
M M

dI
V L

dt
=                                                                           (24) 

 
                                                                   (25) 

  12
1max

1

sin( )M
M

S

L
V V t

L
=                                                                 (26) 

An experiment, presented below, is performed for varying conditions of 12ML to compare the 

calculated MV  with the measured
2emfV .  Eq. (22) and (23) are employed to calculate  12ML . 

4.5 Self Inductance 

    It is shown next how to calculate the self-inductance 
1

SL of a single circuit. It involves just 

changing the limits of the summations of Eq. (23): 

   
1

1
2

12

1 1

2
n n

S

n

L d L
−

+

=                                                                                 (27) 

Eq. (27) computes one-half of the self-inductance
SL . The factor of 2 in Eq. (27) is based on the 

formula for energy in a single coil:  2 / 2E I L= . 

4.6 An example of induction is the self-induction law 

dI
V L

dt
=                                                                         (31) 

( ) ( ) 1max1
1 1max 1 1max 1max 1max

1

With sin( ), cos ,   sin , and  
S

VdI
V V wt I I wt I w wt I

dt wL
= = − = =
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where V is the back electromotive force (emf) voltage induced in a coil due to a changing current 

dI/dt and the coil’s inductance L. The value of the inductance L of a simple coil is calculated by 

the classical Ampère’s Law which is derived from SR [10]. A popular formula for calculating the 

voltage induced in a coil is: 

/V N d dt=                                                                     (32) 

where V is the voltage induced in a coil of N turns due to a changing magnetic flux   with time 

t. Eq. (32) involves the concept of a magnetic field (magnetic flux density) B employed by 

Faraday, Lorentz, and Maxwell. This concept of the magnetic field is a mathematical aid to 

handle macroscopic circuits that involve electrical currents. It works well in engineering 

applications and some physics applications. This concept of the magnetic field summarizes gross 

conditions in electrical circuits, but it fails at the elemental level. (Maxwell applied Faraday’s 

gross results to guess at his equations for electromagnetic wave propagation). 

 

5. A Prior Magnetic Law 

5.1 Biot-Savart Law 

    The Biot-Savart Law for the current element is: 

( )
3

d
d kI

r


=

s r
B                                                                  (33) 

where B is the magnetic flux vector, I is the scalar current in the current element length of vector 

ds, and r is the vector distance from the field to the current element. This law, supposedly, works 

at the macro level when integrated around a loop where the real magnetic forces between 

adjacent current elements cancel out, but it fails at the current element size because it does not 

recognize the magnetic forces between adjacent current elements. The classical Ampère’s Law, 

derived from experiment and SR, does not fail in this regard. Also, this classical law gives 

insight into how a magnetic field is created. The energy of a magnetic field is related to the force 

between two current elements or two relative moving charges.  

    The concept of needing two objects to create electric and magnetic fields is important. For 

instance, the creation of an electron and a positron creates the electric field of the electron or the 

positron. The field of an isolated electron goes off into nether land, but somewhere its electric 

field terminates on a positive charge or charges. Likewise, it takes two objects to create a 

magnetic field. The SR magnetic field may be defined as the differential relativistic electric field 

created by a moving charge as it moves relative to a stationary charge, thus involving two 

objects. This concept might give clues as to the composition of a photon. It can be said the e-

field of a photon is created by two massless charges that are alternately created and annihilated 

from space. As they are annihilated by moving toward each other, they create the relativistic 

magnetic field. So the photon alternates between the electric and magnetic field energies. This 

concept can help explain how polarization exists in photons of some electromagnetic radio 

waves.    

Other magnetic force laws between current elements are discussed briefly below. 
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6. Some Existing Magnetic Force Laws 

6.1 Lorentz/Grassmann’s Law 

Lorentz/Grassmann’s Law is the combination of part of the Lorentz force law and the Biot-

Sarvart Law [6]. The part of the Lorentz Force Law in differential form is: 

1d I d d= 
12 1 2

f s B                                                                          (34) 

The Biot-Sarvart Law in differential form is: 

( )2 2

2

12

ˆ ˆ
4

oI ds
d d

r




= 2 2 12B s r                                                                 (35) 

Combining Eqs. (34) and (35) and applying the triple vector product identity results in the 

Lorentz/Grassmann’s Law: 

( ) ( )2 1 2 1 2

2

12

ˆ ˆ ˆ ˆ ˆ ˆ
4

oI I ds ds
d d d d d

r




=  −   12 1 12 2 1 2 12f s r s s s r                                           (36) 

Eq. (36) is the currently used classical force formula, employed in current textbooks. Pappas [6] 

discussed the merits of this Lorentz/Grassmann’s Law as compared with the Ampère’s Law Eq. 

(18). He stated that Ampère’s Law is, in general, not relativistic or Lorentz invariant and violates 

energy conversation. He says the Lorentz law is relativistic or invariant for isolated charges. He 

also says that for closed circuits with uniform charge mobilities, both laws’ deficiencies vanish, 

and both laws become identical. His assessments conflict with the assessments shown in this 

paper: The Ampère’s Law is shown in this paper to have been derived from special relativity. 

And it obeys Newton Third Law. Energy conservation is not an issue. One can see from the 

Lorentz/Grassmann’s Law Eq. (36) that the ds2 vector is not necessarily in line with r12, the 

vector joining the two current elements. Therefore, this law violates Newton’s Third Law. This 

fact alone severely discredits Lorentz/Grassmann’s Law as physically and mathematically 

unacceptable whereas Ampère’s Law does not violate Newton’s Third Law. The 

Lorentz/Grassmann’s Law is non-derivable from special relativity. One can see from Eq. (36) 

that the force between inline current elements vanishes, but to be able to calculate any energy in 

a magnetic field one has to assume the first term on the right vanishes when integrated around a 

closed loop and the second term on the right is left to calculate the energy of the magnet fields 

with inline elements without any force between them. This makes it very difficult for student 

physicists who understands math to learn electromagnetism in some of the current popular 

college textbooks [7], [14]. 

   Because of its popularity, inductance “calculated” using Eq. (36) is compared in experiments, 

where the inductance of several coils are measured, later reported in this paper (see Section 7.6 

and Section 7.7, Note 6). The calculations are based on imperfect math, but best as can be 

applied to Eq. (36).  

 

6.2 New Gaussian force equation 

Domina Eberle Spencer and associates [9] developed an equation to express the force between 

relatively moving charges to replace Gauss Law Eq. (8). When their equation is applied to 

current elements the resulting equation is:  
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where ar is a unit vector in the direction of the vector connecting the two current elements. Eq. 

(37) is the New Gaussian Equation after triple vector product relations have been applied to the 

cross product terms in their original equation. Spencer states this equation satisfies many 

experiments and is most viable of all the magnetic force equations for current elements. She also 

states that it satisfies the repulsion attributes of successive current elements as observed by Peter 

Graneau. Doing all that, the equation would seem to deserve considerable merit. The author 

attempted to program this equation into the computer to calculate the inductance of a square coil. 

By noting that dI1/dt can be set to zero eliminating the second major term of the equation, the 

first major term can be applied to calculate the inductance. When the inductance of just one side 

of the square coil was to be calculated, it was determined the equation produced zero inductance 

or zero energy storage in one side, thus having no force of repulsion between in-line current 

elements. This is contrary to Peter Graneau’s experience [2]. When the inductance or energy 

storage was to be determined by current elements at right angles to each other, it was found that 

the vector established by the two current elements in the equation are not always in line with the 

radial vector ar, thus violating Newton’s Third Law. It suffers the same defect as the 

Grassmann’s Force Law in that respect. Spencer based the derivation of this equation on a couple 

of Gauss’s Criteria [9]. In this reference, she also summarizes the development of the field of 

electrodynamics, making it an important paper. Spencer’s main criticism of Ampère’s Law, Eq. 

(18), invoked Gauss’s second criterion for a law to be a law of electrodynamics: The equation for 

force between moving charges must take into account the fact that electromagnetic effects are 

propagated at a very large but finite velocity. Eq. (18) requires an infinite velocity. This is not a 

serious deterrent in the practical use of  the equations of SR Electrodynamics since the distances 

involved are usually short,  and when it is recognized that the equations represent “steady state” 

conditions where the relative velocity is constant or uniform.  

Nor is this circumstance a serious deterrent in the practical uses of these equations since the 

distances involved in the use of the equations are usually short and changes in the fields due to 

current changes propagate at the speed of light. The approach to current changes or acceleration 

of moving charges was presented above as a dynamic equation. The section on radio wave 

propagation below will show some of the dynamics effects. 

Spencer said this in her paper: “In the last chapter of his great book on electrodynamics 

Maxwell says that an equation for a force between moving charges is the ’keystone of 

electrodynamics’. But Maxwell never found such an equation that satisfied him”. It is asserted 

Eq. (1) with q2 inserted is the keystone equation: 
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Eq. (38) is a “steady state” equation having uniform relative velocity. It is good for constant, 

high relative velocity between the charges. It presents the total electric and magnetic force 

between moving charges. 

6.3 Weber force equation 

   Andre Koch Torres Assis, a professor at the University of Campinas – UNICAMP, in Brazil 

has studied and worked for many years with Weber’s unpublished equation [15], the left side of 

Eq. (39):  
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The left side of Eq. (39) can be converted to vector notation, as shown on the right side of Eq. 

(39). Eq. (39) can further be converted to: 
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where  is the angle between the relative velocity   12v  and 12r , and  is the angle between the 

relative acceleration 12a and 12r . According to Assis the acceleration term on the far right of Eq. 

(40) represents force due to induction, but that aspect of this equation is not pursued in this 

paper. For uniform relative velocity the acceleration term drops out and the equation is left in the 

magnetic part of the equation that agrees with Gauss’s Law and with the SR Eq. (7). So Gauss’s 

Law and Weber’s Law can match the SR Eq. (7) if at least one of the charges is a current 

element. Thus both Gauss’s Law and Weber’s Law, just as SR Eq. (7), can be used to derive the 

classical Ampère’s Law Eq. (18). This is remarkable fact and it was not promoted by Maxwell 

and Lorentz. 

    Assis developed what he terms “relational mechanics” using Weber’s equation. He uses the 

term “relational” instead of “relative” to distinguish his work from SR. These terms are used in 

the same way. He does not agree With SR. He applies Weber’s equation to gravity much the 

same as this author has applied Eq. (1) to gravity (see Section 10.6).     

6.4 Maxwell-Whittaker force equation 

   This equation promoted by Maxwell and later taken by Whittaker [16] is: 

  ( ) ( ) ( )2 1 2 1 2
12 2 12
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ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
4

oI I ds ds
d d d d d d d

r




= −  −  +   1 12 2 12 1 2 12f s r s s r s s s r                                  (41) 

Eq. (41) is similar to the steady-state part of Spencer’s Eq. (37) and some aspects of it are similar 

to the Lorentz/Grassmann’s Law. It suffers the same deficiencies of those two laws as described 

in Section 6.1 and 6.2. 

 

7. Experiment to Verify the Classical Ampère’s Law 
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Since the classical Ampère’s Law can be derived using SR, an experiment to check on the 

validity of the classical Ampère’s Law can be performed. Using a computer to calculate the 

energy between current elements is most easily done by selecting a length for the current element 

where the current element has canceling stored energy in it. Thus the stored energy in the current 

element does not have to be added to the rest of the energy stored in the combinations of current 

elements in a coil. The inductance of a one-turn square shaped coil is both calculated by the 

integral of Ampère’s Law and measured by resonance with a calibrated capacitor. 

By varying the length of the current element a match between the measured and calculated 

inductance can be obtained for a single turn coil. The inductance of the current element itself was 

calculated using the integral of Ampère’s Law. The inductance of the length required for the 

match was found to be zero. There are mechanisms in the current element that give up energy to 

supply the energy stored in it so that the net stored energy is zero. 

    Eq. (22), Eq.(27) and Eq.(28) of Section 4.4 and Section (4.5)  are programmed in a computer 

to calculate the self-inductance of a single turn coil, 
1

S

cL L= . This suggests an experiment to test 

Ampère’s Law where the inductance mL of a single turn coil is measured by precise electrical 

techniques. One technique involves measuring the resonant frequency of the coil with known 

capacitor capacitance and calculating mL . The total energy stored in the coil is given by: 

                                                    
2

2
t m

I
E L=                                                                         (42) 

 cL  and mL  can be compared directly, the current I  through the coil being arbitrary. The 

inductance L  of the coil is based on its physical characteristics. This makes for a great 

experiment. 

 

7.1 Test Equipment 

1) HP 3490A Multimeter (Used to calibrate resistor and capacitor values and to measure rms 

voltages) 

2) HP 5360A Computing Counter with 5365A Input Module (Used to measure frequency of Test 

Oscillator) 

3) HP 652A Test Oscillator (Used to supply sine wave voltage for achieving resonance in LC 

parallel circuit) 

4) Tektronix 2245 100 MHz Oscilloscope (Used for detecting resonance of LC parallel circuit) 

7.2 Single turn coil description 

A square coil of 0.47 m/side was constructed (see Figure 3). A wooden multi-coil form was 

employed to support the corners of the square coil. Care was taken to eliminate most all material 

that could affect the value of inductance L. Insulated wire of four different diameters were tested. 

The diameters of the wires were: 0.203 mm, 0.635 mm, 1.024 mm and 2.053 mm. It is believed 

the insulation on the wire has no effect on the inductance of the coil. 
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Figure 3. Square coil form with 0.47 m to a side. 

 

7.3 Capacitor Calibration 

A calibrated resistor R was placed in series with the capacitor C to be calibrated and which 

was connected to ground. The test oscillator 3) at its 50 ohm output was connected to R. The ac 

RMS voltage vc as measured across C to ground, and vr across R to ground with Multimeter 1).  

The frequency f was measured with 2). Then the following formula was used in a computer to 

calculate C:    

                                               

2

1

2

r

c

v

v
C

f R

 
− 

 
=                                                                          (43)  

A mica capacitor was employed: 4700 pf +/- 1% (Calibrated to 4.733 x 10-9 farads)                             

              

Inductance Measurement mL : 

The following formula computes mL : 

    
( )

2

1

2
m

o

L
C f

=                                                                        (44) 

where of  is the measured frequency at resonance and C is the calibrated value of the capacitor 

which is connected in parallel with the square coil. Power is supplied through a 1.5 k ohm 

resistor to the parallel circuit from the test oscillator 3). 

7.4 Computing the Inductance cL               

A computer program using Eq. (22), Eq. (27), and Eq. (28) is employed to calculate the 

inductance cL  for each of the different wire diameters. The current element length is varied by 

changing the number of current elements to a side of the square coil. When the computed cL  

value matches the measured value mL , then the value of the length of the current element ds is 
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noted and entered into the program that computes the energy or inductance in the current 

element. 

7.5 Program for current element inductance 

Since the inductance of the current element itself was not added in the program to calculate 

cL , it is important to check if it was zero for the match made in computing cL . In order to do this 

a program was written to view the current element as a group of very small parallel wires which 

carry current in the same direction. To formulate the wire group, the cross section area of the 

wire is determined from the coil’s wire diameter and reshaped into a square cross section area of 

the same size. Then an integral number N dividing the side of the square cross section area is 

entered. N2 represents the number of the small parallel wires. The target length of the current 

element is entered from the program calculating cL . And a sub current element length is then 

determined for all the small parallel wires.  Eq. (22), Eq. (27), and Eq. (28) are employed to 

calculate the inductance of the current element and to verify that it is zero or near zero since the 

program outputs discrete approximations. N is varied from 2 to 9 and the inductance or energy is 

found to change signs (meaning zero inductance) for all the wire diameters. 

7.6 Results of the measurements and calculations 

 

Table 1. Square Coil, 0.47m/side. Inductance Measurements and Calculations. 

 

Solid wire 

diameter 

mm 

ds 

required 

for 

match 

mm 

Ratio: 

ds/wire 

diameter 

Lm 

 

µH 

Lc 

 

µH 

ds in 

current 

element 

program 

Number 

‘wires’ in 

current   

element 

for zero 

energyI 

0.203 1.661 8.182 2.914 2.915 1.661 49 to 64 

0.635 5.165 8.134 2.488 2.484 5.165 36 to 49 

1.024II 8.896 8.688 2.284 2.284 8.896 64 to 81 

2.050 16.206 7.905 2.036 2.041 16.210 36 to 49 
              IZero energy storage is used here to mean as well zero inductance, according to Eq. (42). 

         IIStranded. 

                

 

7.7 Discussion of Results  

1. Results support the classical Ampère’s Law, Eqs. (17) and (18), and thus support the SR 

Electrodynamics Eqs. (1), (6), (7), (17), (18) and (38). This is because the classical Ampère’s 

Law is derivable from SR Electrodynamics and supported here by appropriate and verifiable 

experiments. 

2. Results show that inductance increases as wire diameter decreases even though the area of the 

coil remains the same. 
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3. Results show the length of the current element required for inductance match increases as wire 

diameter increases. 

4. The average ratio of current element length used in the calculations to the round wire diameter 

is ds/w. dia. = 8.074 for solid wire. For the one stranded wire tested, this ratio was 8.7. This 

length creates around zero stored energy in the current element. In order to compute the 

inductance of a solid wire coil without the knowledge of its measured value, one would need to 

use this number (ds/w. dia. = 8.074) to approximate the current element length, ds, in this 

program. Precision is lost in this situation since this ratio varied a little in different size wires. 

5. While Item 1 above, is correct, some physicists may claim the Current Element Program (see 

Section 9, Item 4) is not adequate to validate zero energy in the current element. It appears a 

current element of a length such that its inductance or stored energy is zero is a necessity for 

proper calculation of the inductance. With a ds/w. dia. ratio  = 1, for instance, the program 

outputs an inductance that does not match the measured value. 

6. Inductance of the single turn square coil of Table 1 was computed using just the right term of 

the right side of Eq. (36). Generally, they matched the measured values Lm of Table 1 only by 

dramatically increasing the number of current elements to a side of the square coil. This reduced 

the ratio of ds/wire diameter to around 0.42. Of course, with no in-line current element forces 

expressed by Eq. (36), there is no way to determine energy storage in this type of current 

element. It expresses a weakness of both Eq. (18) and Eq. (36) in that you can vary the current 

element size and change the value of the computed inductance. This places reliance on the zero- 

energy concept of the current element for proper dimensioning of the current element size for use 

in Eq. (18).  

 

8. Experiments with Induction 

8.1 Experiment with induction with two square coils 

Using the conditions described in the above Section 4.4 on induction between two stationary 

current elements with varying current in one element and Eq. (22) to (26), an experiment on 

induction in SR Electrodynamics was performed. A wooden multi-coil form was constructed 

much like four table legs around which five single turn coils were wound. (See Figures 4 & 5) 

The coils were square being 0.47 meters to a side. 18 a. w. g. stranded wire made up the coils. 

The first coil was the primary coil on which an oscillating voltage was applied. The other four 

coils were spaced parallel on the “legs” from the primary coil at 0.5 in., 1.0 in., 2.0 in., and 3.0 

in. These four coils were left open circuited. The process of this experiment is as follows:  

Calculate with computer the mutual inductance of each of the four coils with respect to the 

primary coil that had the oscillating current. Then calculate the induced voltage on the coils. The 

calculated induced voltage was then compared with the measured induced voltage on the coils. 

Peak-to-peak voltages were measured on both the primary coil and all the secondary coils with 

the oscilloscope used in the above experiment. Also, the RMS voltages were measured with the 

multi-meter listed in the above experiment. A 4733 pf capacitor was placed in parallel with the 

primary coil and the output of the test oscillator was connected directly to the parallel circuit of 
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the primary coil and capacitor and the frequency adjusted to cause resonance. The primary 

voltage was set to 8.0 volts p-p. Table 2 presents the results of the experiment with multi-meter 

measurements (scaled to having 8.0 v p-p on the primary coil.) 

 

 

 

 
 

Figure 5. Picture of square coil form used for testing induction. 

Also pictured is the test equipment employed in the experiment. 

0.47 m 

Primary Coil 

Open Circuit  

Secondary Coils 
d 

Figure 4. Square coil form, 0.47 m /side, used in induction 
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Table 2. SR Electrodynamics Induction Experiment, primary voltage = 8.0 v p-p. 

 

Coil 

Distance 

d 

in. 

Distance 

Avg. d 

mm 

Measured 

Vemf v p-p 

Computed 

Vemf v p-p 

% 

Difference 

1 0.5 13.1 3.725 3.735 +0.27 

2 1.0 25.4 2.925 2.903 -0.75 

3 2.0 51.8 1.973 2.036 +3.19 

4 3.0 77.5 1.517 1.577 +4.09 

 

8.2 Discussion of Results 

1. The results were close enough to support the induction formula of Eq. (20). This law is like 

the induction law of Neumann [2]. It is based on current elements instead of having to have flux-

linkages of a closed coil. 

2. Because this induction law is supported, the other induction laws based on the same derivation 

as Eq. (20) are strongly supported, even though they are not tested here. 

3. It supports the concept of a magnetic field which acts directly between the two current 

elements and allows the induction voltage to be calculated. The conventional method of 

representing magnetic flux and induction by flux linkages requires a closed circuit instead of an 

open circuit. Thus, the experimental results are not possible by conventional means.  

4. The reduction of inducted voltage in Coils 3 and 4, at the larger distances from the primary 

coil, appears to be real based on the accuracy of the measurements. One possible cause of this 

error maybe due to the 60 pf input capacitance of the measuring multi-meter which creates a 

small load on the open circuit coils.  

8.3 Experiment with induction with two round coils 

Two identical round single turn solenoid coils 15.88in. dia. (0.4032 m) were wound on flat 

cardboard cake plates. (see Figures 6 & 7). The inductance of one of the coils was measured to 

be 1.5486 µH. For a computed inductance match, a ds = to 8.68 mm was required. Stranded wire 

was used.  For the ds length to have zero stored energy (zero inductance), it was found that 64-81 

sub-wires were required in the current element computation.  Coil 2 was made primary and Coil 

1 was placed 40.04 mm and 107.61 mm directly above Coil 2 in two tests. A 4733 pf capacitor 

was connected in parallel with Coil 2 and the test oscillator was connected directly to the parallel 

LC circuit of Coil 2. Resonance was achieved by varying the frequency of the test oscillator. A 

4.7480 v RMS was applied to Coil 2. The RMS voltage was measured on the open terminals of 

Coil 1. These RMS voltages were scaled to represent having 8.00 v p-p on primary Coil 2. The 

corresponding v p-p on secondary Coil 1 is presented in Table 3 below.  Computed values were 

computed using Eq. (22), (23), and (26).   
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                                         Figure 6. Round coils for induction experiment. 

 

Table 3. Measured and Computed Induced Voltage in Round Coil 1. 

 

Coil 1 
Distance 

mm 

Measured 

v 

p-p 

Computed 

v  

p-p 

% 

Difference 

Position 

1 
 40.04 2.101 2.106 +0.26 

Position 

2 
    107.61 1.042 1.090 +4.59 

 

 

 

 

 

 
 

Figure 7. Picture of the two round coil forms 

employed in an experiment with induction. 

0.04032 m 

m 

d 

Open Circuit 

Secondary Coil 

 

Primary Coil 
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8.4 Discussion of results 

1. Again the induction formula of Eq. (20) is supported.  

2. This was confirmed in computing the inductance with finite length of current elements that in 

order to properly set the limits of the piece-wise computer integration, every current element of 

Coil 2 must relate to every current element of Coil 1 only once in the computation. 

3. The larger error (+4.59 %) occurring at the larger distance between the computed value and 

measured value corresponds to the error (+4.09%) that is shown in Table 2. As explained Section 

8.2, Item 4, this error may be due in part to the 60 pf input capacitance of the measuring multi-

meter. 

9. Notes on the generated computer programs: 

Seven short Borland Turbo Pascal programs were written for this paper. They are listed 

below. RMKS system of units is employed in all cases. 

1. CAP_CAL.PAS Used for capacitor calibration. 

2. L_CAL.PAS Used for calculating the “measured” inductance of a coil using resonance 

techniques. 

3. IND_SQ3.PAS Used to calculate the inductance of the square one-turn coil. 

4. CURELEMT.PAS Used to indicate zero energy storage or zero inductance in the length of a 

current element. 

5. INDUCTN1.PAS Used to calculate the induced voltage on a single-turn square coil from 

varying current in another single-turn square coil. 

6. IND_SOL4.PAS Used to calculate the inductance of a single-turn circular coil. 

7. IND-SOL5.PAS Used to calculate the induced voltage on a single-turn circular coil from 

varying current in another single-turn circular coil. 

 

10. Some Implications of SR Electrodynamics and Experiments 

Some possible implications  in the fields of physics and electrical engineering as result of this 

study: 1.  the energy distribution in a current element, 2. the concept of  a magnetic field, 3. the 

laws of physics relating to force between current elements, 4. radio wave propagation, 5. sub-

atomic nuclear-type orbits, and 6. gravity fields. These are discussed in order below: 

10.1 Energy distribution in a current element 

When the current element is viewed as a group of parallel wires with current in the same 

direction, the energy distribution stored in the current element due to a current flowing in it can 

be discussed. Parallel wires with current in the same direction attract each other, so that there is a 

“pull” of molecules across the width of the current element that stores energy. It is known from 

the classical Ampère’s Law that there is “repulsion” in the molecules along the length of the 

current element. When these two sources of energy storage become balanced, the correct length 

of the current element is obtained for use in our calculations for inductance with that law, where the self-inductance 

effect of the current element is omitted. When a current element is subdivided into a group of parallel wires with 

sub-current elements, then the integral of Eq. (18) may be employed to model the energy distribution in it. Using 
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this technique and the integral of Eq. (6), it may be possible to predict conditions for generating 

instabilities in plasma.  

 So what happens in a physical situation where a current element is shorter than required for 

energy balance and the current element is composed of plasma? This situation occurs in the field 

of arc welding. Plasma ions are made to flow across the gap at the end of the welding rod to the 

surface of metal being welded. As a result, the electrons are being pulled and combined with 

positive ions releasing energy, all due to Ampère’s Law. This is probably where the high 

intensity light and heat of welding comes from. Also, more energy is possibly released than 

required to promote the current flow. “Burning” of the metal may produce excess energy!  

10.2 The concept of a magnetic field 

The concept of a magnetic field as currently used in physics and electrical engineering is an 

artifact. It is an aid for handling gross conditions like induction in large coils, transformers, 

induction in motors, etc. On a smaller scale it can be seen that the magnetic field of a current 

element is due to a compressed or reduced electric field intensity e due to special relativity 

considerations. This is the field as seen by the observer, but not seen by the moving charge that 

produces the compressed or reduced e-field. The magnetic field depicted in a current element by 

the Biot-Savart Law, Eq. (33) is incorrect when applied to a current element in a wire carrying 

current. This is a result of the vector cross product term that shows no magnetic field in the 

direction of the flowing electron current. It is incorrect because the wire current is composed of 

discreet electrons, each having an electric field according to Eq. (1), and that there is a magnetic 

field in the direction of the flowing current. The artifact concept of the magnetic field that James 

Maxwell employed in his equations is the same as used by Faraday to account for large scale 

induction. The Maxwell equations should be reviewed with the concept of a magnetic field 

presented by Eq.(1). While vector analysis math is very useful in the field of electrodynamics, 

the employment of the vector cross product should be avoided in the field. This is because its use 

generally leads to the violation of Newton’s Third Law. An example of the mathematical 

complications involving the Lorentz Force Law and the use of the vector cross product is given 

in Prykarpatski’s paper [17]: “Classical Electromagnetic Theory Revisiting: The A. M. Ampère 

Law and the Vacuum Field Theory Approach”.  

10.3 The laws of physics relating to magnetic force between current elements and charges 

Lorentz Force Law, Eq. (2) is misleading, because it is assumed by many physicists that the 

source of the e-field and the magnetic field, as presented in the formula, can emanate from a 

single moving charge. The formula can apply to an electron beam moving in an e-field and a 

separate magnetic field in a cathode ray tube. The second term in the Lorentz Force Law 

involving the magnet field is also misleading. Lorentz/Grassmann’s Law Eq. (36) should be 

abandoned because it is based on the incorrect Biot-Sarvart law and violates Newton’s Third 

Law. The “magnetic field” depicted by the Biot-Savart Law, Eq. (33) is incorrect when applied 

to a current element in a wire carrying current. Ampère’s Law Eq. (17) and Eq. (18) should be 

reinstated in physics.  

10.4 Radio Wave Propagation 
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The dynamic formula of Eq. (11) appears to be a ‘natural’ for radio wave propagation; it is 

repeated here for easy reference: 

( ) ( )
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kq ds v ra
d d d d

r c vc


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While Eq. (11) describes a force between a charge and a current element, it can also describe a 

magnetic field at a distance from the current element. An antenna is a wire that carries current 

and emits radiation. Therefore, implicit in Eq. (11) is radio wave propagation. By varying the 

velocity of the electrons (varying current flow in the wire or antenna) a varying magnetic field 

should appear outside the antenna. And this should be the varying magnetic field that propagates 

throughout space at the speed of light. The following is a possible derivation of a propagation 

formula. It assumes a transmitting antenna being a vertical wire protruding from the earth’s 

surface. Taking the q2  and the “steady-state” term out of Eq. (11) we have an equation for the 

magnetic field h at a distance r12. Recall that a field is defined as force per unit charge.  

( )21 1

2 2

12

1 2
1-1.5cos

kI ds ra
d

r c c
 

 
=  

 
12

h r                                                    (45) 

 

Noting that 1 1 1 1 1/I ds v ds= , 1 1

1

1dv dI
a

dt dt 
= = , letting  1 max sin( )I I wt=   1

max cos( )
dI

I w t
dt

= , 

and inserting r/c in the cos term for correct phase representation: 

( )  21 1
12 1max

1

ˆ 1 1 5cos cos ( / )
4

oI ds
d - . I t r c

c r



 


= −h r                              (46) 

Compare Eq. (46) to an equation from a radio wave propagation text book [18]: 

   sin cos ( / )
4

oIds
H t r c

c r



 


= −                                                      (47) 

Since the antenna is a short vertical wire, then the  terms represent the field lobes in the vertical 

plane. There is strong similarity between Eq. (46) and (47). 

Eq. (43) illustrates the basic relativistic nature of radio wave propagation and field patterns. 

This is due to length contraction of the space surrounding the basic electron charge when it’s 

movement is seen by a non-moving point. There are many factors involved in radio wave 

propagation. However, based on successful experiments with the classical Ampère’s Law, 

Eq.(46) should have some validity and it may be one of the foundations in radio wave 

propagation. Also, it is an example of retarded action at a distance versus instantaneous action at 

a distance.  

A test could be made comparing the vertical lobe structures presented by Eq. (46) and (47). 

10.5 Sub-atomic nuclear-type orbits 

The keystone equation, Eq. (38), can be applied to sub-atomic orbits in the manner of atomic 

Bohr orbits. It comprises both the electric and magnetic fields and can simplify the calculations 
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by not having to treat the electric and magnetic fields separately. When the velocity vector of Eq. 

(38) is at right angles to the radial vector, the equation simplifies to having one gamma term in 

the numerator. This makes possible Bohr like analysis of sub-atomic or nuclear-type orbits where 

the speed of orbiting particles may approach the speed of light c [19].  

10.6 Gravity fields 

Eq. (1) when applied to a gravity field of a massive object allows for calculation in four 

dimensional spaces the relationship of two massive bodies moving relative to each other. They 

must be far enough apart that the gravity field can be considered emanating from a point in the 

center of the mass. Mercury appears to be far enough away from the sun for such a calculation. 

    It appears that a gravity field between two masses responds to their relative velocity as does 

the electric field between charges in current elements to their relative velocity. The perihelion 

advance of Mercury for 100 years was calculated this way. It matched the perihelion advance 

within 1% calculated by General Relativity [20]. 

For slowly relatively moving massive bodies the formula is:  

2
21 2

12 12 2 2

3
ˆ 1 1 cos

2

Gm m v

r c


  
= + −  

  
F r                                                  (48) 

For fast relatively moving bodies, the formula is: 

  1 2
12 12 3/22 2 2 2

1
ˆ

1 ( / )sin

Gm m

r v c 
=

 − 

F r                                                (49) 

where  , , and v are defined as in Eq. (1). 

These are steady-state formulas. Dynamic equations may be applicable on some occasions 

such as for gravity waves. Eq. (48) and (49) may have a relation to the existence of dark matter. 

11. Concluding Remarks 

This paper demonstrates that electrodynamics has a theoretical basis, that of SR, which is 

derived from two postulates: the equivalence of physical laws in all inertial frames and the 

constancy of the speed of light for all observers. 

The SR Electrodynamics laws when applied to slow relative velocities are very similar to the 

Ampère-Neumann Electrodynamics of Peter Graneau, Gauss’s Law, and Weber’s equation. The 

Ampère-Neumann Electrodynamics is useful at slow relative velocities just as the Newton laws 

appear as a limit in special relativity at slow relative speeds. The SR Electrodynamics formulas, 

Eq. (1) and Eq. (38) can be useful at high relative velocity speeds and therefore are the more 

general of the electrodynamics laws. SR Electrodynamics can could be called Einsteinian 

Electrodynamics, but this author prefers the name of SR Electrodynamics. 

It can be asked why does the slow electron velocity in current in a wire (on the order of 

cm’s/sec) have such a large relativist effect. The answer is that there are a very large number of 

electrons in the wire.  
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Notes 

1. Updated subscripts and some formula 10/6/22. JK 


