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Abstract:  The Andre Ampère’s Law is a mathematical equation that describes the force 

between two current carrying wire segments called current elements. It was created by 

Ampère from a series of experiments in about 1822. Andre Ampère was a French 

physicist and mathematician. The purpose of this paper is to show the mathematical 

connection between his experimentally deduced law and Einstein’s Special Relativity 

(SR), which was formulated almost a hundred years later. This connection, with 

experiment, will verify Andre Ampère’s Law as the correct one from the many like laws 

that exist. In addition, Andre Ampère’s experiment will add an experimental verification 

of SR at slow relative velocities.  This mathematical derivation is performed using four-

vector math from SR and results are presented in three dimensions. Experimental 

verification of the law is not presented in this paper because the fact the law can be 

correctly mathematically derived is a fact that needs to be assimilated by the reader and 

is enough for this paper. Experimental verification is later. 

Key Words: SR, Lorentz transform, four vector, three vector, electric field (e-field), 

relative moving charges, magnetic force, Coulomb force, steady-state, current element. 
 

Introduction. 

    This paper is important just to get the field of Electrodynamics back on a better track 

than the one developed by Maxwell and Faraday back in the mid19th century. Andre 

Ampère determined his law from a set of very careful experiments and was highly 

praised later by James Clerk Maxwell. 

    Several physicists have written similar laws. They are Weber, Grassmann, Maxwell, 

Neumann, etc. The laws that Maxwell and Grassmann have written are popular ones in 

the current physics literature. Weber’s law is very similar to Andre Ampère’s  Law, and 

as such deserves a lot of credit. It is currently promoted by Andre Assis of Brazil. 

   Algebra and Vector Analysis are the mathematical tools employed in this paper. 

Analysis is done in 3 dimensions contrasted to 2 dimensions such as having two parallel 

current elements. 

The current element, vectors, and some definitions. 

    A current element is a short piece of a conductor of magnitude length ds and is 

carrying a current of magnitude I. It possesses an electron or proton line charge density 

 . The electrons are moving  with velocity v  and creating the current I . The 

relationship between the moving electrons and the current I  is given by the following 

formula:   /ds Ids v = − . By convention the direction of the current is opposite the 

direction of the velocity of the electrons. We set the velocity vector v  of the electrons in 



the same direction as the direction of the position vector position vector ds . Remember 

that the vectors ds , v , and r  have magnitudes and components in the x, y, and z axis  

of a 3D coordinate system. 

These relationships are shown in Figure 1:. 
 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Vector relationships of the current elements in this derivation. 

 

Andre Ampère’s Law. 

   This law allows one to calculate the force between two current elements as depicted in 

Figure 1. This force is directed along the position vector 12r .  It can be repulsive or 

attractive, depending on the direction of the vectors. This law is a steady state law 

which means the currents in the current elements are constant. The law as determined 

by Andre Ampère is given by the following formula[1]: 
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The angle terms on the right side of Eq. (1) were determined experimentally by Andre 

Ampère. This author will not define the angle terms in Eq. (1) since they can be 

expressed equally in vector notation by the following formula[1]: 
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Eq. (1) and Eq. (2) are mathematically equivalent. Eq. (2) is the defined target of this 

derivation. 

 

Basic considerations. 

1.  A uniform electric field exists about a stationary charge of an electron or proton. The 

charge is assumed to be a point charge and does not have a finite size. 

2. The field of the point charge is assumed to pervade all space and falls off in intensity 

at 21/ r . 

3. Velocities are relative between interacting particles. 

4. The electric field of a moving charge pervades all the space of its inertial frame, thus 

having instant reaction with a charge in contact with the field. Acceleration of a charge 

creates a new velocity that changes the electric field that spreads out over the new 

inertial frame at the speed of light. 

5. The charge q is invariant from one inertial frame to another. 

6. A positive sign on the overall magnetic force represents repulsion while a negative 

sign represents attraction. 

7.A negative sign must be entered into the equations for negative charges such as 

electrons. A positive sign must be entered into the equations for positive charges such 

as protons. This makes the direction of the force appear correctly as in 6 above. 

 

Special Relativity Theory (SRT) and formalism employed. 

1. Basic Postulates: 

a. Relativity Principle(RP): “all inertial frames are totally equivalent for the 

performance of all physical experiments”. 

b. “Light travels rectilinearly with constant speed c in vacuum in every inertial 

frame”. 

2. Lorentz Transformation is used. 

3. Gamma factor:  2 21/ 1 /v c = −  

4. Three-vectors: a(a1, a2, a3) 

5. Four-vectors: V(V1, V2, V3) 

6. Four-vector force formula:  
2

( ) ,v
c


• 

=  
 

f v
F f  

7. The four-vector force formula is good for transforming force between internal frames 

and creating force laws. 

8. The derivation of the four-vector force formula and how the individual components 

are transformed between relative moving frames is found in this book [2] on Special 

Relativity. 



 

Starting point for the four-force SRT transformation of the force between relatively 

moving charges. 

   The Lorentz Force formula (full law) is the starting point for relativists as depicted in 

literature: 
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q
c

 
= + 

 

v h
f e                                                                                     (3)  

   The relativists transformation results are two formulas: 

                                      
1

c
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( )
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   The author contends the full Lorentz force law is not appropriate for the four-force 

transformation between relatively moving isolated charges. The regular Lorentz Force 

Law may be applicable in a cathode ray tube or accelerators where the source of the 

magnetic field is separate from the “magnetic field” created by the moving charge. The 

author expects that the “magnetic field” will fall out of the four-force transformation of 

the first term of the Lorentz Force formula. So, the author takes the first term and does a 

four-force transformation on it: q=f e . The results are: 

        

( )
3

2 3 2 2 2 21 / sin

q

r v c 

=

 −
 

r
e                                                      (4) 

   The electric field of a stationary charge is defined by 3k /q r=e r  in RMKS units where 

k=1/4 o . o  is the permittivity of free space. So in RMKS units we multiply the 

numerator of Eq. (3) by k. 

Theta in Eq. (4) is the angle between 12r and v . See Figure 2. 

                                      
   It is helpful to visualize the e-field of 1q the moving charge, in Eq. (4) and compare it to 

an e-field of a stationary charge. This is shown in Figure 3. e-fields are generally 

r12 

v 

q2 (stationary) 

q1 (moving) 

Ɵ 

Figure 2. Relation between the vector terms in Eq. (3) as applied to 

two charges (q1 is q in Eq.(4)). Ɵ is angle between r12 and v. 



represented by radial lines emitting from a charge. The number of e-field flux lines per 

area is the magnitude or strength of the e-field. Multiply the e-field at a point in space by a 

charge at that point in space, then you have the force on that charge. 

 

The magnetic force law between slow relative moving isolated charges. 

   We are now ready to derive magnet force between relative slow moving isolated 

charges.  

    An equation very similar to the Lorentz Force Law is derived from Eq. (4) using the 

Binomial Series and eliminating higher order terms of v2/c2 (this derivation is shown in 

Appendix A): 

( )
2

21 1
2 2 2 2
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ˆ0.5-1.5cos
kq kq v

q
r r c


 

= + 
 

12 12
f r                                                   (5) 

Eq. (5) describes the total force between two relative slow moving isolated charges. The 

first term describes a uniform e-field (Coulomb field) as in the Lorentz Force Law and 

the second term describes magnetic effects as does the second term in the Lorentz force 

law. Also, the relative velocity v  between the two charges is clearly defined, as in 

Figure 2, and not obscure as in the Lorentz Force Law. The force in  Eq. (4) acts along 12r  

and does not violate Newton’s Third Law as the Lorentz Force Law does [3]. Eq. (5) 

could be written as: 

( )2 1 1
ˆ

mq e e= +12 12f r                                                                          (6) 

where em1 is the new definition of the magnetic field created by the moving charge 1q : 

Length contracted e-

field of moving electron 

as seen by a stationary 

charge. 

 

    q1 Uniform e-field of a 

stationary electron as seen 

by another stationary 

charge. 

Differences in these 

two e-fields create 

the magnetic field. 

Biot-Savart 

Law ignores 

this part. 

Figure 3. How special relativity (SR) creates the magnet field of moving 

charges. This shows a cross section of the effect on the e-field of a 

moving charge represented by Eq. (4). 
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( )
2

21
12 2

1

ˆ0.5 1.5cos
kq v

r c
= −m1e r                                                                 (7) 

The definition of a field, electric or magnetic, is force per unit charge. Consequently, 

multiplying em1 by 2q  gives magnetic force between relatively slow-moving isolated 

charges. 
 

The magnetic force Law between a stationary current element and a stationary 

charge.  

   This steady state law Eq. (8) is derived from Eq. (4) in the same manner as Eq. (7) with 

the exception that 1q  in Eq. (4) is replaced with 1 1ds , where 1 is line charge density 

and 1 1ds  is the current element charge (this derivation is shown in Appendix B): 

                                      ( )
2

22 1 1
122 2
ˆ 1 1 5cos

kq ds v
d - .

r c


=12f r                                                           (8) 

The   in 1 1ds  expresses length contraction of the distance between the moving 

charges in the current element as seen by the test charge 2q  thereby increasing the 

effective charge density it sees. Notice the subtle differences between Eq. (7) and Eq. (8). 

The “0.5” in Eq. (7) is replaced by “1.0” in Eq. (8) and the moving charge 1q is replaced 

by the current element charge 1 1ds . Also, notice that Eq. (8) describes a force between a 

stationary charge and a “magnetic field” em1 of a stationary current element. There is no 

need to have 2q  moving with respect to the current element as would be required by the 

Lorentz Force Law Eq. (3). This force has been reported in the works of Cooper [4] and 

Spencer [5]. Eq. (8) is very similar to Gauss’s Law, Eq. (9), (with the Coulomb term 

removed) derived in about 1835 [6]:   

                                                         ( )
2

21 2

2 2

12

ˆ 1 1 5cos
kq q v

- .
r c

=12 12f r                                               (9) 

One or both of the charges in Gauss’s Law should be a current element charge. 

Apparently, Gauss, a mathematician, “back engineered” the classical Ampère’s Law to 

arrive at Eq.(9). The electron and special relativity had not been discovered when he 

derived this law. Gauss’s Law can denote a magnet force between two current elements. 

It is important to recognize that Eq. (8) and Eq. (9) describes the magnetic force between 

a stationary charge 2q  or a stationary 
2 2ds , and a current element charge 1 1ds . In Eq. 

(8) the velocity term v  is the relative velocity between the positive ion lattice, which is 

stationary relative to 2q , and the moving electron lattice creating the current. When the 

equation is applied to the moving electron lattice of another current element the 



velocity term is the relative velocity of the electrons in that lattice and the moving 

electron lattice of the other current element.  

Eq. (8) is employed to derive the classical Ampère’s Law Eq. (2). Cross combination 

force relationships of Eq. (8), three altogether, are added together to form the classical 

Ampère’s Law as describes below. This is not a trivial derivation and is achieved here 

for the general 3-dimensional case using vector analysis. Once Ampère’s Law has been 

derived, the connection of special relativity to electrodynamics is confirmed. Peter 

Graneau’s work on “The Ampère-Neumann Electrodynamics of Metals” [7] is then 

applicable.  

The magnetic force law between current elements, classical Andre Ampère’s Law. 

The test charge 2q  in Eq. (8) may be replaced by 
2 2ds of another wire current element 

with charge line density 
2 . Then the two 'ds s  are replaced by two / 'Ids v s , the v  

corresponding to the moving charges in each of the two current elements. The positive 

ion lattices of the two stationary current elements are stationary with respect to each 

other. Their Coulomb repulsion has already been subtracted out in Eq. (8) and this force 

does not need to be added. Then applying Eq. (8) three times to the cross combination 

of charges in the two current elements and adding the forces one arrives at the classical 

Ampère’s Law.  
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122 2
ˆ

k ds ds

r c

 
=A r  and 2 2

1
ˆ ˆcos ( ) ( ) = •

1 12
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2
ˆ ˆcos ( ) ( ) = •
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First charge combination of proton lattice in 
2ds  with electron lattice in 1ds : 

2 2 2 2
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ˆ ˆ[ 1.5( ) ]d v v= − − •

1 12
f A ds r  

Second charge combination of proton lattice in ds1 with electron lattice in ds2: 
2 2 2 2

21 2 2
ˆ ˆ[ 1.5 ( ) ]d v v= − − •

2 21
f A ds r  

Third charge combination of electron lattice in 1ds  with electron lattice in 
2ds : 

Determining this is more involved because one must determine the relative velocity and 

the angle between the relative velocity vector v and the position vector r. This is not 

impossible. First, we set up a vector diagram describing the situation and then employ 

the law of cosines; see Figure 4: 



 

 

Figure 4. Vector diagram for determining relative velocity vector between two velocity 

vectors and also the cos( )  term of Eq. (8).  This is a very important diagram used for 

deriving Andre Ampère’s Law. 
 

Perform the following mathematical steps to determine the cos( ) and the relative 

velocity of the electron lattices Rv in Eq. (8), refer to Figure 4: 

Law of Cosines: 2 2 2 2 cos( )a b c bc = + −  so 2 2 2

1 2 1 2
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2
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Adding magnetic forces:  
2 2 2 2
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2 2 2 2 2 2 2
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f A ds •r ds •r

ds •ds ds •r ds •r ds •r ds •r

ds •ds ds •r ds •r

 

 Andre Ampère’s Law (RMKS units): 

Substituting back in A  and replacing 1 1ds with 
1 1 1/I ds v and 

2 2ds with 2 2 2/I ds v : 

           ( )2 1 2 1 2
12 2 2

12

= - 2 -3( )( )
kI I ds ds

d
c r

•12 1 2 1 12 2 12f r ds ds ds •r ds •r                                                 (10) 

With 
2

1

4 4

o

o

c
k



 
= = , where 

o is permeability of free space:                                         

( )2 1 2 1 2
12 2

12

= - 2 -3( )( )
4

oI I ds ds
d

r




12 1 2 1 12 2 12f r ds •ds ds •r ds •r      Q.E.D.                                          (11) 

Conclusion. 

   Eq.  (11) was experimentally verified by Andre Ampère in about 1822. It now has the 

backing of SR. This law and the equations leading to its derivation are also legitimate 

formulas and should not be ignored by physicists and engineers. (The author has 

shown in a paper[8] how Eq. (11) can be used in a computer to calculate values by using 

a finite length of the current element ds . This avoids long computer calculations having 

ds to be almost infinitely small.) 
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Appendix A 
 

Derivation of the electric and  magnetic force between slow relative moving isolated 

charges. 

   Refer to Eq. (3) and Figure 2 in the paper’s text. Multiply Eq. (3) by kq2 and we get a 

formula (in RMKS units) Eq. (1a) for force between two moving isolated charges that 

should be good up to the speed of light. However, for Andre Ampère’s Law, the 

relative velocities are slow and we need an approximation of Eq.(1a). 
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Appendix B 
 

Derivation of the electric and magnetic force between a stationary current element 

and a statioary charge. 

   Refer to Eq. (3) and Figure 2 in the paper’s text. Multiply Eq. (3) by 1k q  and we get a 

formula (in RMKS ubits) Eq. (1b) for force between a stationary current element and a 

stationary charge. Remember that 1q  can represent an isolated charge like an electron or 

a group of isolated charges like an electron lattice in a current element. The latter is the 

case for Eq. (1b).The insertion of   in the numerator of Eq. (1b) represents length 

contraction of the electron lattice of 1q  as seen by the stationary charge 2q .This 

inseration will not violet any SRT rules. 1q  will later be replaced by 1 1ds  where 1 is the 

line charge density of current element 1. For Andre Ampère’s Law, the relative 

velocities are slow and we need an approximation of Eq.(1b). 
 

( )

2 1 12
12 3

2 3 2 2 2 21 / sin

k q q

r v c



 

=

 −
 

r
f                                                                           (1b) 

Let 1 2 12

3

kq q

r
=

r
a   ,  

1
2 2

2

1
1

v
d

c

 
= = − 

 
  ,   

12
2 2

2
(1 sin )

v
g

c


−

= −   ,    Then 3dg=f a  

Binomial Series (Standard Form): 

( ) 2( 1)
1 1 ...

1! 2!

n n n n
x x x

−
 =  + +    2 1, 0,1, 2...x n   



Applying to g: 
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For approximating d use the Binomial Series letting 
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v v v
dg

c c c

v v

c c

 

 

= + − = + − +

= + − + − = + −

  

Applying a:  ( )
2

21 2 12

3 2
1 1 1.5cos

kq q v

r c


 
= + − 

 

r
f  

 
Notes: 

1. Formulas updated 10/7/22. JK 

 

 

 

 

 

 

 

    



     


